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Abstract. The paper presents recent work on the design and development of AI 

chatbots for museums using Knowledge Graphs (KGs). The utilization of KGs 

as a key technology for implementing chatbots raises not only issues related to 

the representation and structuring of exhibits’ knowledge in suitable formalism 

and models, but also issues related to the translation of natural language dialogues 

to and from the selected technology for the formal representation and structuring 

of information and knowledge. Moreover, such a translation must be as transpar-

ent as possible to visitors, towards a realistic human-like question-answering pro-

cess. The paper reviews and evaluates a number of recent approaches for the use 

of KGs in developing AI chatbots, as well as key tools that provide solutions for 

natural language translation and the querying of Knowledge Bases and Linked 

Open Data sources. This evaluation aims to provide answers to issues that are 

identified within the proposed MuBot approach for designing and implementing 

AI chatbots for museums. The paper also presents Cretan MuBot, the first exper-

imental KG/Ontology-based AI chatbot of the MuBot Platform, which is under 

development in the Heracleum Archaeological Museum. 
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1 Introduction  

The paper presents recent work on the design and development of AI chatbots for mu-

seums using KGs. A KG mainly describes real world entities and their interrelations, 

organized in a directed graph [1, 2]. This new interactive technological trend for mu-

seums has been driven by recent observations and studies reporting that museum visi-

tors are not impressed in the long-run by simple virtual guided tours or tours that use 

high-tech technological applications such as Augmented, Virtual and Mixed Realities 

(AR/VR/MR), but they are interested in gaining knowledge about the exhibits in a hu-

man-like, interactive and conversational manner [3, 4].  Furthermore, in comparison 

with Machine Learning (ML) systems, KGs and their integration to AI chatbots in every 

mailto:svaritimiadis@aegean.gr


2 

domain provides to the AI chatbots better rational dialogues that could eventually lead 

to more meaningful AI applications. ML focuses on prediction accuracy and scoring 

learning algorithms. Common sense knowledge or reasoning is out-of-scope of ML 

systems and for this drawback ML systems are lacking in credibility [5–7]. However, 

the combination of KGs and ML is an intriguing future research work.  

In a museum visiting experience, visitors must be able to chat with ‘smart’ exhibits, 

ask questions in natural forms (through text or voice) and receive audible or written 

answers. The utilization of KGs as a key technology for implementing chatbots in this 

setting raises not only issues related to the representation and structuring of exhibits’ 

knowledge in suitable formalism and models, but also issues related to the translation 

of natural language dialogues to and from the selected technology for the formal repre-

sentation and structuring of information and knowledge [8]. Moreover, such a transla-

tion must be as transparent as possible to visitors, towards a realistic human-like ques-

tion-answering process [4]. 

For chatbot framework/application to be effective and useful for the museum or any 

other domain, it must combine recent AI technological advances (Semantic Web, 

Linked Open Data, Knowledge Graphs, Natural Language Processing/Generation, Ma-

chine Learning) with museum needs and purposes. Natural Language Processing (NLP) 

and Natural Language Generation (NLG) techniques enable computers to segment, as-

sign meaning, and analyze human communication in its natural forms and to give the 

users the ability to chat with the smart exhibits in a natural way [9, 10].  

A museum chatbot must fulfill several specific requirements and characteristics. It 

must be simple, informative, accurate and precise. It must have strong conversational 

skills and provide meaningful content. It may be entertaining and should be able to 

engage the audience in the whole experience/tour duration. It may be positive if there 

is a capability by the chatbot to provoke users to find and learn more, but at the same 

time to be sensitive and understanding on human emotions [11–13]. 

Engineers must be able to configure the chatbot for ‘talking’ in human-like manner, 

and at the same time ‘taking’ in triples i.e., to retrieve and present structured knowledge 

utilizing Resource Description Framework (RDF) triple stores and the Linked Open 

Data (LOD) cloud. Furthermore, it must be available anytime, have an attractive inter-

face and to be easy to use/interact with [11–13]. RDF and Web Ontology Language 

(OWL) are the two basic descriptive Semantic Web technologies that play a crucial role 

in the formal representation and structuring of data, information and knowledge [14].  

The presented work aims to address challenges related to the following questions: 

1. How can museum visitors ‘talk’ to museum exhibits in the most natural way, to learn 

about them? 

2. How can human-exhibit dialogues be used for the user to retrieve the exhibit 

knowledge about themselves and about other related/connected exhibits, utilizing 

linked and open datasets? 

3. What is the most appropriate technological trend to use for the most efficient con-

versation between visitors and ‘smart’ exhibits? 

In relation to the above questions, the contribution of this paper is threefold: 
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1. To introduce the novel concept and interactive technological trend of AI chatbots for 

museums, as an alternative to the high-tech technological AR/VR/MR applications, 

towards supporting the learning of knowledge about their exhibits in a human-like, 

interactive and conversational manner, 

2. To review the approaches and necessary tools for KG/Ontology-based AI chatbots 

and Query/Answering (QA) systems, as an alternative candidate to the ones based 

on ML techniques (e.g. Dialogflow),  

3. To introduce a novel KG-based framework for chatbot-human interaction in a smart 

museum environment and the MuBot approach to the design, implementation and 

evaluation of such a framework.  

The rest of the paper is structured as follows: Section 2 presents the related work 

concerning the development and use of AI chatbots and QA systems based on KGs 

and/or ontologies. Also, this section provides a critical description of key tools for 

NLP/NLG and KGs/Ontologies transformation/translation. Section 3 presents the Mu-

Bot approach, the main purpose, the special features, and the architectural design. In 

section 4, the Cretan MuBot is presented, the first experimental chatbot of the MuBot 

approach, as an evaluation case study in the Heracleum Archaeological Museum. Sec-

tion 5 discusses future steps in the development of the MuBot approach and concludes 

the paper. 

2 Related Work   

In this section, selected related approaches to AI chatbots/QA systems that are based 

on KGs and/or ontologies, as well as selected research and commercial tools for 

NLP/NLG and KGs/Ontologies transformation/translation, are presented. The aim of 

our work is to evaluate all these approaches and tools for their usability and effective-

ness, in the context of the proposed MuBot approach.  

2.1 Related approaches to AI chatbots/QA systems based on KGs 

and/or ontologies 

KGs are considered as a new AI technological trend that originates to the basic princi-

ples of the Semantic Web and the construction of Knowledge Bases (KBs). As KGs are 

in an evolution process, several definitions can be found [1, 2]. A definition quoted 

from recent literature is: “A knowledge graph (i) mainly describes real world entities 

and their interrelations, organized in a directed graph, (ii) defines possible classes and 

relations of entities in a schema, (iii) allows for potentially interrelating arbitrary enti-

ties with each other and (iv) covers various topical domains” [15].  

The term KG was re-introduced as such at 2012 by Google, which has developed the 

famous Google’s Knowledge Graph [16]. The most famous open and commercial KGs 

are Freebase, Wikidata, DBpedia, Yago, Google’s Knowledge Graph Yahoo!’s 

Knowledge Graph, Microsoft’s Satori and Facebook’s Entities Graph [15]. KGs have 

many advantages and can be used for a variety of tasks such as relationship prediction 

systems, search engines and question/answering agents [2]. KGs are flexible, can be 
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easily updated and related to new data in a smart way, contain semantic information, 

rely on ontologies and may be queried in natural language [2, 16]. KGs may also be 

used in synergy with other available AI-driven technologies such as NLP, NLG, OWL 

and RDF datasets [2]. KGs have the ability to respond to NLG questions through data-

base query languages. AI chatbots and QA systems can exploit this new opportunity of 

KGs and become ‘smarter’ by gaining unlimited access to stored and structured 

knowledge [9].   

There are many proposed approaches to the recent bibliography that introduce KGs 

to AI chatbots and QA systems. Hallili [10] has proposed the SynchroBot, a dialog 

system that a) has connectivity to robust and flexible KBs and KGs for extracting in-

formation, and b) could use NLP tools to interpret user’s questions and NLG techniques 

to provide proper answers. This ability differs from other QA systems which are either 

focusing in providing a logical conversation ability to the users, without caring for the 

richness of their knowledge source, or, on the other hand, can only provide accurate 

answers without any conversation skills.  

OntBot was an earlier ontology-based chatbot that relied on the approach proposed 

by Hallili [17]. OntBot used the Protégé platform [18] in order to develop an ontology 

template which gathers knowledge from e-commerce website APIs. Users can place 

their questions to a dialog manager that uses NLP such as Facebook Wit.Ai. The dialog 

manager connects to the ontology template with Python language, searches the KBs 

and KGs and provides the proper answer to the user with the help of NLG techniques 

from the dialog manager [19].  

Another similar approach was implemented for the healthcare domain and the goal 

was to produce a framework that can assist patients by providing them an AI chatbot 

with strong conversational skills and a robust Knowledge Base source [20, 21]. 

A clear statement of KGs as a part of AI chatbot is provided at the proposed approach 

of ‘GRANK.AI.’ KGs platform. GRAKN.AI is described as a KG database that uses 

machine reasoning to simplify data processing for AI Chatbots and other applications. 

Question querying is done through Graql, a knowledge-oriented graph query language 

for retrieving information, and for performing graph analytics and automated reason-

ing. The proposed approach is using DialogFlow with all its NLP, NLG, ML compo-

nents, as the dialogue manager component. DialogFlow is connected to GRAKN.AI 

KGs and searches for the proper answer to the user’s question [9]. It is a good example 

approach for demonstrating the combination of KGs and ML technologies.  

Summarizing, the integration of KGs to AI Chatbots and Q/A systems is a task that 

can boost the AI chatbots effectiveness. More crucial though is the development and 

evaluation of NLP/NLG components that could become a reliable interpreter of natural 

language input or output.  

2.2 Tools for NLP/NLG and KGs/Ontologies translation 

The tools that are presented and reviewed in this paper are covering key parts of the 

proposed approach and focus on the following questions:  

1. How to recognize the entities and their relationships in a statement?  
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2. How to translate natural language text to a KG/ontology? 

3. How to translate natural language questions to SPARQL queries?  

4. How to translate RDF triples (returned from the SPARQL query) to natural language 

text?  

Name Entity Recognition  

Word Sense Disambiguation (WSD) and Name Entity Recognition (NER) for the learn-

ing of ontologies from text, are difficult tasks to accomplish and automate. Several tools 

were developed that can recognize the entities and the classes of given user statements 

in natural language.   

The NLP group at Stanford University developed the Stanford Named Entity Recog-

nition (NER), a Java-based tool used for information extraction from users’ text. NER 

tries to find and classify atomic entities in text into predefined categories such as the 

names of persons, organizations, locations, expressions of times, quantities, monetary 

values, percentages, etc. [22]. An online demo is published at http://nlp.stan-

ford.edu:8080/ner/. Using the example expression “Snake Goddess figurine was found 

at Knossos palace in Crete” as input to the tool, entity “Location” for the words “Knos-

sos, Crete” and “Organization” for the words “Snake Goddess” respectively, were rec-

ognized. 

A more advanced tool for parsing plain text is Stanford CoreNLP which provides a 

set of grammatical analysis NLP tools developed by Stanford NLP group, such as the 

part-of-speech (POS) tagger, the named entity recognizer (NER), the parser, the open 

information extraction tool (OPENIE) and others [23, 24]. An online demo of the 

CoreNLP tool is found at http://corenlp.run/. The tool was evaluated with the expres-

sion “Snake Goddess figurine was found at Knossos Palace, in Crete” and successfully 

returned a set of outputs by every integrated subtool i.e., NER tool recognized the en-

tities as described above, while OPENIE analyzed and recognized the relationships be-

tween them. 

Another tool is Babelfy which implements a graph-based approach to Name Entity 

Recognition and Linking, and WSD, based on a light identification of the possible 

meanings presented in graphical semantic interpretations. Babelfy is demonstrated in 

an online tool at http://babelfy.org/. When the phrase “Snake Goddess figurine was 

found at Knossos palace in Crete” was used as input, the tool successfully recognized 

the entities and the concepts, searched for them to LOD cloud sources such as Wikipe-

dia, Babelnet and DBpedia, and fetched the definitions of every entity organized in a 

graph representation [25]. 

 

Natural language text to KGs/ontologies 

Protégé is the most popular and widely used free software for easily building and main-

taining ontologies for any domain. Users can edit domain ontologies, share their ontol-

ogy to others, create a knowledge graph representation of them, connect them with ex-

ternal sources, design and implement SPARQL queries, export the developed ontolo-

gies in several formats such as RDF/XML, RDF/OWL and others [18]. Protégé is also 

a Web service for registered users at https://webprotege.stanford.edu [26]. Protégé has 

been used in our use case scenario to manually create the Cretan MuBot evaluation 

http://nlp.stanford.edu:8080/ner/
http://nlp.stanford.edu:8080/ner/
http://nlp.stanford.edu/software/tagger.html
http://nlp.stanford.edu/software/tagger.html
http://nlp.stanford.edu/software/CRF-NER.html
http://nlp.stanford.edu/software/lex-parser.html
http://nlp.stanford.edu/software/openie.html
http://nlp.stanford.edu/software/openie.html
http://corenlp.run/
http://babelfy.org/
https://webprotege.stanford.edu/
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knowledge base (schema and museum data). The output is available at 

https://github.com/KotisK/muBotOnto-example. Protégé is providing excellent ser-

vices in manually building a knowledge base but lacks automation in the creation of 

ontology schemas from user input statements.  

FRED is a tool for automatically producing RDF/OWL ontologies and linked data 

from natural language sentences. It is implemented in Python and is available as Rep-

resentational state transfer (REST) service [27] and as a Python library suite. FRED is 

using a big set of established NLP components to produce RDF/OWL ontologies and 

knowledge graphs. The provided results are enriched with NER and WSD techniques 

[28]. FRED tool is available online at http://wit.istc.cnr.it/stlab-tools/fred/demo/ and 

was used to produce RDF/OWL ontology and a KG for the expression “Snake Goddess 

figurine was found at Knossos palace in Crete”. The example output is included at 

https://github.com/KotisK/muBotOnto-example. The FRED tool provided an RDF on-

tology that has some basic similarities with our custom-made Protégé ontology, as en-

tities, classes and properties are similarly recognized to both ontologies. FRED is using 

RDF triples that are only derived from DBpedia KB, while our Protégé ontology uses 

custom-made properties and entities. FRED tool is been used in several semantic web 

applications and will be considered as a component to the proposed MuBot approach.  

 

Natural language text to SPARQL queries 

AutoSparql was developed by the Research Group Agile Knowledge Engineering and 

Semantic Web (AKSW) at University of Leipzig (http://aksw.org/Projects/Au-

toSPARQL.html). Its main goal is to provide users an easy way to place questions to a 

knowledge base. Specifically, AutoSparql can convert a natural language question to a 

SPARQL query, which can then retrieve the answer from a given RDF triple store. The 

software uses the Query Tree Learner (QTL) algorithm which is described by its crea-

tors as a light-weight learning algorithm [29]. The QTL algorithm can use various NLP 

techniques for creating sophisticated semantic representations of the given questions. 

In addition, the system and the algorithm can be trained and become smarter in provid-

ing the proper SPARQL queries. Furthermore, the user can connect with open RDF 

resources such as DBpedia and others [29–31]. AutoSparql software is not active now 

but its code is available at https://github.com/AskNowQA/AutoSPARQL. During eval-

uation, runtime errors were reported at compile time. Future work includes fixing and 

testing the tool in order to be used as candidate component of the proposed MuBot 

approach.  

FREyA software is an interactive natural language interface that is used for querying 

ontologies. FREyA uses syntactic parsing in combination with the ontology-based 

lookup in order to interpret the question of the user. FREyA is also able to use Linked 

Open Data such as DBpedia. In addition, the user gets further involved and trains the 

system as his choices are used in order to improve its performance over time [32, 33]. 

This strong involvement of the user in the training of the system is consider as a draw-

back, as the naivety of the user about certain complex issues of data modelling, without 

any assistance, may not lead to the best results [30]. FREyA is not fully active now but 

http://wit.istc.cnr.it/stlab-tools/fred/demo/
http://www.uni-leipzig.de/
https://github.com/AskNowQA/AutoSPARQL
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its code is available at https://github.com/danicadamljanovic/freya. The code is out-

dated (Sesame java framework has evolved to Eclipse RDF4J framework which re-

quires further installation efforts, which are left for future work).  

QUEPY is a python framework that can transform natural language questions to 

SPARQL queries. The transformation from natural language to SPARQL queries is 

done by using at first a special form of regular expressions and then using a convenient 

way to express semantic relations. The input question is parsed using a library called 

REfO (Regular Expressions for Objects). The rest of the transformation is handled au-

tomatically with the use of the Natural Language ToolKit (NLTK), a python platform 

that is included in the QUEPY framework and other techniques, to finally produce RDF 

triples and SPARQL queries [34, 35]. The QUEPY demo is not fully developed and 

supported. The code and the documentation of the tool is found at 

https://quepy.readthedocs.io/en/latest/. The software needs significant effort in order to 

be installed and work properly.  

In our future work we aim to reuse and proceed to any modifications to the above-

mentioned tools in order to make them functionable components of our approach.  

 

SPARQL query and RDF triples to natural language 

SPARQL2NL is a tool that was developed by the Agile Knowledge Engineering and 

Semantic Web (AKSW) research group at University of Leipzig 

(http://aksw.org/Projects/SPARQL2NL.html). The SPARQL2NL tool allows the ver-

balization of SPARQL queries by converting them into natural language. The tool uses 

LOD sources such as DBpedia and performs several improvements to the given results 

of the queries that help users to choose the suitable answer in a natural way, without 

getting involved with ontologies and SPARQL queries’ syntax [29, 36]. The 

SPARQL2NL project is not active now but its code is available at 

https://github.com/AKSW/SPARQL2NL. The installation of SPARQL2NL software 

encountered the same compile errors as the AutoSparql software.  

The Spartiqulator system provides a similar functionality as the SPARQL2NL tool. 

Its main scope is to verbalize SPARQL queries in order to create natural language ex-

pressions that are readable and understandable by the common user. The Spartiqulator 

system refers only to RDFa and RDFS sources and uses several NLG techniques for 

the verbalization of SPARQL queries to suitable answers for the  users [37, 38]. There 

is an active online demo of the tool at https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqu-

lator/. The tool has been tested with SPARQL queries from our Cretan MuBot use case 

scenario. For our example SPARQL query (Where was Snake Goddess found?), which 

can be found at https://github.com/KotisK/muBotOnto-example, Spartiqulator system 

provided the answer “Found ats of snake goddess”. The given answer has obvious syn-

tax and grammatical mistakes and also lacks the location property which is derived 

from http://dbpedia.org/ontology/ that is not supported by the Spartiqulator system. The 

same limitations were also noticed with other example SPARQL queries that have been 

used for testing the tool.  

SPARQLtoUser is a tool that can produce a representation of a provided SPARQL 

query to the end-users. The tool supports multilingual input and refers to any domain. 

https://github.com/danicadamljanovic/freya
https://quepy.readthedocs.io/en/latest/
http://www.uni-leipzig.de/
http://aksw.org/Projects/SPARQL2NL.html
https://github.com/AKSW/SPARQL2NL
https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqulator/
https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqulator/
https://github.com/KotisK/muBotOnto-example
http://dbpedia.org/ontology/
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The tool tries not only to verbalize the query, but also to find a more schematic repre-

sentation of it. The user can choose the SPARQL query that provides the most accurate 

answer. SPARQLtoUser code can be found at https://github.com/WDAqua/ 

SPARQLtoUser [39]. SPARQLtoUser tool is also used as a QA webservice available 

at http://www.wdaqua.eu/qa. The webservice is accepting input from the users in NLG 

and is providing them several possible answers along with their SPARQL queries, al-

lowing them to select the most suitable one. It also provides a probability score to each 

answer, asking users to affirm it or not. The QA webservice refers and gets its answers 

from Wikidata, DBpedia, DBLP and OpenStreetMap KDs, but cannot understand all 

user’s questions and answer them directly and in a sophisticated way.  SPARQLtoUser 

tool returned “no answer” for our example query “Where was Snake Goddess found 

at?”. However, for the term “Snake Goddess” the tool returned the correspondent Wik-

ipedia data entry.  

Sparklis is a Semantic Web tool that helps users to explore SPARQL endpoints by 

guiding them in the interactive building of questions and answers, from simple ones to 

complex ones. There is an online tool at 

http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html. Users can build a query without 

having any knowledge of the SPARQL language. Users can see the SPARQL query 

that has been created and get a proper answer [40, 41]. The tool has been evaluated with 

the questions from our Cretan MuBot use case. Unfortunately, due to the fact that the 

tool uses only profound SPARQL endpoints such as DBpedia, it could not provide 

proper answers. The user is not able to place a free question and must follow a guided 

structure [42]. The tool works well only if you shape a query such as “Give me an island 

in Greece?”. The tool can retrieve the possible answers by providing all the islands in 

Greece. But in the case of questions such as “I want to find the most famous island in 

Greece?” the tool fails.  

LD2NL is an open-source holistic NLG framework that facilitates the verbalization 

of the three key languages of the Semantic Web (RDF, OWL, and SPARQL) into NL. 

LD2NL framework builds upon the open source code of SPARQL2NL tool, which pre-

sented in a previous paragraph [43]. The LD2NL can generate either a single sentence 

or a summary of a given resource, rule, or query [44]. The LD2NL is an ongoing project 

that is not fully released as a portable application. Its code could be found at 

https://github.com/dice-group/LD2NL.   

We aim to reuse and proceed to any modifications to the abovementioned tools in 

order to make them functionable components of the proposed MuBot approach.  

3 The MuBot approach 

The architecture of the MuBot approach that is proposed in this paper relies on three 

main components:  

─ a Knowledge Base component that utilizes Semantic Web technology (RDF, 

SPARQL query language, OWL ontologies) for knowledge representation, linking, 

reasoning and querying,   

https://github.com/WDAqua/
http://www.wdaqua.eu/qa
https://github.com/dice-group/LD2NL
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─ NLP component for interpreting users input from natural language to 

RDF/SPARQL,  

─ NLG component for creating the proper well-defined human-like answers.  

The aim of the approach is to develop an AI chatbot able to conduct dialogues/con-

versations, such as the following:  

─ User: Where was the Snake Goddess figurine found? 

─ Chatbot: The Snake Goddess was found at Knossos Palace. 

─ User: And where is Knossos Palace located? 

─ Chatbot: Knossos Palace is in Crete. 

Moreover, an additional objective of the proposed approach is to customize such a 

conversation in a way that it looks like discussing with the exhibit itself, in case where 

visitors are found to be nearby (in close range) with it. In this case, the chatbot takes 

over the role of the exhibit (it becomes the exhibit). For instance, the following dialogue 

is presented in a museum visitor standing close to the Snake Goddess exhibit, where 

the chatbot now has taken over the role of the Snake Goddess exhibit: 

─ User: Where were you found? 

─ Snake Goddess (as chatbot): I was found at Knossos Palace. 

─ User: And do you know where Knossos Palace is located? 

─ Snake Goddess (as chatbot): I do. Knossos Palace is located in Crete. 

Providing a personality trait to an AI chatbot, contributes towards a more engaging 

experience for the visitors as first person communication is always more effective [45]. 

In future work authors will evaluate and reuse tools that can provide personality traits 

to the MuBot approach.  

3.1 KG-based chatbot-human interaction in a smart museum 

environment 

In the following paragraphs, the interaction (questioning/answering) between a chatbot 

of a smart museum and its visitors that want to interactively learn about its exhibits, is 

presented.  

For demonstration purposes, Fig. 1 depicts the interaction of two visitors (human 

entities) and the chatbot (software entity) about two exhibits. This choice has been made 

in order to point out the capacity of the proposed approach to setup the chatbot in a way 

that can lookup/search for the requested knowledge in a distributed manner, i.e., among 

the network of interconnected/interrelated exhibits. Such a network is built offline by 

the curators that are familiar with the ‘stories’ that each exhibit can tell the visitors. 

This interconnection/interrelation is formally put in a knowledge index structure that 

the chatbot has access for lookup/search during the QA processing. So, if a question 

cannot be answered by the chatbot, due to lack of knowledge that a smart exhibit may 

have (i.e., its KG is missing the related RDF triples), the chatbot may lookup/search 

this index for relative knowledge that resides in the KGs of another smart exhibit or in 

the LOD cloud.  

The following entities ‘live’ in the example smart museum environment:  

• Human (H): the visitor in the museum, 
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• Chatbot (CH): the chatbot software agent,  

• Exhibit (Exh): the actual artefact in a museum e.g., a painting, a figurine, etc., 

• Smart Exhibit (SExh): the virtual exhibit in the smart environment of a museum, a 

virtual entity represented in a conceptual model and encoded in a formal language 

such as OWL. 

In terms of data, information and knowledge, the following are considered to be the 

required in such a setting: a) Knowledge Graph (KG), b) Natural Language Question 

(NL-Q), c) Natural Language Answer (NL-A),d) Formal Language Question (FL-Q), 

e) Formal Language Answer (FL-A), f) SPARQL query (SPARQL-q), g) RDF triples 

(RDF-triples), h) Data Links (DL).  

In terms of storage, the setting involves: a) Knowledge Graphs in RDF triples store 

(KG-store), b) a “Smart Exhibits” Knowledge Index store (SExh-KI-store), and c) the 

Linked Open Data cloud (LOD-cloud).   

Finally, the processing of data, information and knowledge requires the following 

components: a) Natural to formal language conversion (NL2FL), b) Formal to natural 

language conversion (FL2NL), c) Smart Exhibits’ Knowledge Index Lookup (SExh-

KI-LU), d) Formal Language Question Execution (FL-Q-Exec), e) Data Links Discov-

ery (DL-D).  

Fig. 1.  Visitors interaction with Smart exhibits through the CH application 
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In Fig. 1, an example representation of how two museum visitors interact through 

the chatbot dialog manager with two “smart” exhibits is depicted. The process is as 

follows:  

1. The visitors, as they use the chatbot application and reach the exhibit of their interest 

(Exh1, Exh2), interact with the CH by setting a NL-Q.  

2. The CH searches at the SExh-KI-store, with the use of SExh-KI-LU, and finds the 

stored basic information about the exhibits.  

3. The CH, with its NL2FL component, translates the NL-Q (1, 2) of the visitors to a 

formal syntax and sends them to the FL-Q-Exec. The NL2FL component is using 

NLP techniques as the NER.  

4. At the FL-Q-Exec, FL-Q (1,2) are transformed to SPARQL-q which are looked-up 

to KG-store for retrieving the right answer.  

5. KGs, that are designed for the description of the SExhs, are stored at the KG-store 

(as RDF triples). If an answer could not be found to the exact matched stored SExhs 

KGs at the KG-store, an additional search could be conducted to other SExh KGs of 

the museum KG-store or with the use of the DL-D component to connected LOD 

cloud sources.  

6. When the matched RDF triples are retrieved, the FL-Q-Exec sends the FL-A to the 

FL2NL component. 

7. At the FL2NL component, NLG techniques are used for the transformation of the 

FL-As to NL-As for the SExHs.  

8. Finally, the visitors receive the NL-As through the CH app and could proceed to the 

next NL-Q. 

3.2 The MuΒot general architecture 

The proposed MuBot approach aims to provide museums the opportunity to create sim-

ple, interactive and human-friendly chatbots for their visitors. Visitors will be able to 

use a chatbot application that will be created through the MuBot platform, to chat with 

a ‘smart’ exhibit when they are in front of (or close to) it. They will be able to ask 

questions through text or voice (in natural language) and receive audible or written 

answers. The basic components of the proposed general MuBot architecture are pre-

sented in Fig. 2 and are described in brief at the following paragraphs. 



12 

Fig. 2. The MuBot general architecture. 

 

Dialogue manager 

The dialogue manager is the first component of the proposed architecture and it consists 

of the front-end graphical user interface that the museum visitors use in order to have a 

conversation with the chatbot or the exhibits, in contrast to the back-end infrastructure. 

The dialogue manager could be implemented either as a custom-made solution or reuse 

a commercial (or free) existing chatbot interface that follows all the UX and UI stand-

ards for creating chatbots.  

 

NLP  

The NLP component is a crucial part of the architecture as it takes the natural language 

questions (NL-Qs) and transform them to machine-readable formal questions (FL-Qs). 

Related work [10, 46] describes three aspects of NLP identification:  

─ Expected Answer Type (EAT), which in the proposed architecture is handled by the 

Content Type Recognizer (CTR), represents the answer to the question,  

─ the property that relates the question with the possible answer, and  
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─ the recognized NE (Named Entity) which in the proposed architecture is handled by 

the Content Entity Recognizer (CER) and represents the subject of the question 

made. 

Query generator and Knowledge Base retriever  

This component transforms the FL-Qs to SPARQL-queries with the FL-Q-Exeq com-

ponent and searches the KGs Store or the LOD cloud for the proper knowledge. The 

FL-Q-Exeq receives the provided knowledge in RDF triples and transform it to FL-As.  

 

Knowledge Base (KB) 

The KB store is the storage of the KGs. If the search to the KB does not return any 

results, the DL-D tool will search for possible answers from external Data Links and 

the LOD cloud. When the knowledge is retrieved, the right answer returns to the FL-

Q-Exeq as RDF triples. The connection/linkage of the MuBot architecture with external 

KGs, such as DBpedia, and the reasoning engine (inferencing mechanism) pro-

vides/adds a range of additional (inferred) RDF triples that multiplies the ability of CH 

in understanding users’ questions.  

 

NLG  

This component of the proposed architecture uses NLG techniques in order to pick a 

response pattern that matches with the query-provided triples and proceeds to the final 

answer formatting by providing user the proper human-like NL-As.  

4 Evaluation  

The proposed MuBot architecture is under deployment and evaluation with example 

cases in the Archaeological Museum of Heraklion. Specifically, the Cretan MuBot use 

case scenario has the visitors chatting with a famous exhibit of the museum, the “Snake 

Goddess” figurine. For the specific scenario an example ontology was manually engi-

neered and stored to the knowledge base. An example model (in .owl and .ttl serializa-

tions) and related queries in SPARQL can be accessed at https://github.com/Ko-

tisK/muBotOnto-example. In the following paragraphs, the Cretan MuBot use case sce-

nario and the related queries that have been engineered for this purpose are demon-

strated. 

4.1 Knowledge Base 

The KB uses an example MuBot ontology engineered with the use of the Protégé tool 

for the specific scenario, with IRI: http://i-lab.aegean.gr/ontologies/mubotOnto/ and 

prefix “mbo”. It uses ontologies that are derived from external sources such as the 

DBpedia ontology, with IRI: http://dbpedia.org/ontology/ and prefix “dbo”.  

https://github.com/KotisK/muBotOnto-example
https://github.com/KotisK/muBotOnto-example
http://i-lab.aegean.gr/ontologies/mubotOnto/
http://dbpedia.org/ontology/
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Fig. 3. The Cretan MuBot KG-oriented instantiation. 

 

The MuBot experimental ontological model data is described in the triples form 

<subject>, <predicate>, <object>. In our example, the statement “Snake Goddess figu-

rine was discovered at Knossos Palace” is expressed with the following RDF triples:  

a) <mbo:SnakeGoddess> <rdf:type> <mbo:Figurine> 

b) <mbo:SnakeGoddess> <mbo:discoveredAt> <mbo:KnossosPalace> 

By extending and enriching the model with external DBpedia semantic data and the 

MuBot ontology, the following triples can be added:  

c) <mbo:Figurine> <mbo:discoveredAt> <dbo:Place> 

d) <mbo:KnossosPalace> <dbo:location> <dbo:Crete> 

e) <dbo:Crete> <rdf:type> <dbo:Place> 

f) <mbo:KnossosPalace> <rdf:type> <dbo:Place> 

The classes that are produced for the example instantiation are: mbo:Figurine and 

dbo:Place, and the properties are: mbo:discoveredAt, rdf:type, and dbo:location. Fur-

thermore, synonyms could be added to the classes and properties, allowing the system 

to be able to understand different questions with the same meaning.  

4.2 Question understanding with NLP 

The users of the MuBot platform can place their questions through textual or vocal 

input methods. Voice to text transformation tools can be used for vocal input (such tools 



15 

are out of the scope of the presented work).  The provided text input can be interpreted 

using several NLP techniques and tools, as described in the Related Work section. In 

the presented example the question made is “Where Snake Goddess figurine was dis-

covered?”. The CTR is mbo:location, the property is mbo:discoveredAt and the CER 

is mbo:SnakeGoddess and mbo:Figurine.  

When all the natural language input is processed, the component is generating a for-

mal language query (in our case in SPARQL) that produces results (answers) from the 

KB. The example formal query follows:  

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

SELECT? v? z 

WHERE { 

mbo: SnakeGoddess mbo:discoveredAt ?v. 

?v dbo:location ?z. 

} 

After query execution and pattern matching, the following triples are matched and 

returned: 

a) <mbo:SnakeGoddess> <mbo:discoveredAt> <mbo:KnossosPalace> 

b) <mbo:KnossosPalace> <dbo:location> <dbo:Crete>      

In a more elaborated example engineered to demonstrate the inferencing/reasoning 

capabilities of the proposed approach, the following statement is defined (in terms of 

properties and property hierarchy): 

c) <mbo:discoveredAt> <rdfs:subPropertyOf> <mbo:foundAt> 

The restriction of mbo:foundAt object property has as domain the class mbo:Figu-

rine, and as range the class dbo:Place. Inferencing will add the following inferred triple 

in the model: 

d) <mbo:SnakeGoddess> <mbo:foundAt> <mbo:KnossosPalace> 

This allows for querying the inferred model (tested in Snap SPARQL plugin of Pro-

tégé 5.5) with the following queries also:  

 

I. “Where Snake Goddess figurine was found?”: 

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

SELECT ?v ?z 

WHERE { 

     mbo:SnakeGoddess mbo:foundAt ?v. 

     ?v dbo:location ?z. 

} 

The returned data in variables are: ?v = mbo: KnossosPalace, z? = mbo:Crete. 
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II. “What was found in Crete?”: 

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

SELECT ?s ?v 

WHERE { 

     ?s mbo:foundAt ?v. 

     ?v dbo:location mbo:Crete. 

} 

The returned data in variables are: ?s = mbo:SnakeGoddess, v? = mbo: KnossosPal-

ace, allowing for NLG module (described in next section) to provide answers such as 

“Snake Goddess was found in Knossos Palace, in Crete”. 

The example Cretan Mubot model (in .owl and .ttl serializations) and the related 

queries in SPARQL can be accessed from https://github.com/KotisK/muBotOnto-ex-

ample.  

4.3  NLG answers  

The last step of the process in the MuBot architecture is the creation/formation of the 

appropriate answer to the given question(s).  

In the presented example, the NLG component will be able to generate the following 

answers: 

a) “Snake Goddess was found at Knossos Palace” 

b) “Knossos Palace is located in Crete” 

Or better, by synthesizing the two statements above: 

c) “Snake Goddess was found at Knossos Palace, in Crete” (replacing ‘is lo-

cated in’ with ‘, in’). 

The generation processes could be more creative if it can exploit additional semantic 

properties that, for example, could return multimedia files like a video of the figurine, 

as a response. 

5 Conclusion 

The design and development of an AI museum chatbot with the use of KGs is a big 

challenge as there are several distinct tasks to be considered in order to provide credible 

answers to questions in a human-like manner. The provide review of key tools and 

KGs-based AI chatbot approaches aims to provide knowledge related to the proposed 

architectural components that must be considered for the implementation and deploy-

ment of the MuBot approach. AI chatbots must be designed in a way that museum 

visitors will be facilitated to interact with exhibits the way they could possibly interact 

with a museum curator or a guide. Moreover, museum chatbots should have strong 

conversational skills in order to seamlessly engage users in their cultural experience. 

https://github.com/KotisK/muBotOnto-example
https://github.com/KotisK/muBotOnto-example
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This can be achieved by seamlessly accessing and consuming knowledge through KGs 

stores and the LOD cloud.  

The deployment of the Cretan MuBot use case provides the opportunity to evaluate 

the proposed approach and highlight the steps to future work. Such work is focusing in 

further evaluating NLP/NLG related modules i.e., evaluation of key tools that transform 

natural language (visitor questions) to SPARQL queries and the returned triples 

(knowledge) back to natural language (answers to visitor), in the most effective and 

human-centered manner. In addition, further work should be conducted in defining the 

needs and the requirements of museum visitors and museum curators by the proposed 

AI museum chatbot approach. This might be considered as the most intriguing part of 

our future work as MuBot approach must not only provide credible answers in a human-

like manner but should also develop personality traits and skills that will engage the 

users and assist them in the understanding of the presented museum/cultural 

knowledge.  
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