
“Talking” triples to Museum Chatbots

Savvas Varitimiadis1, Konstantinos Kotis1[0000-0001-7838-9691], Dimitris Spiliotopou-

los2[0000-0003-3646-1362], Costas Vassilakis2[0000-0001-9940-1821], Dionisis Margaris3[0000-0002-

7487-374X]

1University of the Aegean, Dept. of Cultural Technology and Communication, i-Lab, Greece
2University of the Peloponnese, Dept. of Informatics and Telecommunications, Greece

3University of Athens, Dept. of Informatics and Telecommunications, Greece

svaritimiadis@aegean.gr, kotis@aegean.gr,

dspiliot@uop.gr, costas@uop.gr, margaris@di.uoa.gr

Abstract. The paper presents recent work on the design and development of AI

chatbots for museums using Knowledge Graphs (KGs). The utilization of KGs

as a key technology for implementing chatbots raises not only issues related to

the representation and structuring of exhibits’ knowledge in suitable formalism

and models, but also issues related to the translation of natural language dialogues

to and from the selected technology for the formal representation and structuring

of information and knowledge. Moreover, such a translation must be as transpar-

ent as possible to visitors, towards a realistic human-like question-answering pro-

cess. The paper reviews and evaluates a number of recent approaches for the use

of KGs in developing AI chatbots, as well as key tools that provide solutions for

natural language translation and the querying of Knowledge Bases and Linked

Open Data sources. This evaluation aims to provide answers to issues that are

identified within the proposed MuBot approach for designing and implementing

AI chatbots for museums. The paper also presents Cretan MuBot, the first exper-

imental KG/Ontology-based AI chatbot of the MuBot Platform, which is under

development in the Heracleum Archaeological Museum.

Keywords: knowledge graphs, RDF triples, NLP, chatbots, museums

1 Introduction

The paper presents recent work on the design and development of AI chatbots for mu-

seums using KGs. A KG mainly describes real world entities and their interrelations,

organized in a directed graph [1, 2]. This new interactive technological trend for mu-

seums has been driven by recent observations and studies reporting that museum visi-

tors are not impressed in the long-run by simple virtual guided tours or tours that use

high-tech technological applications such as Augmented, Virtual and Mixed Realities

(AR/VR/MR), but they are interested in gaining knowledge about the exhibits in a hu-

man-like, interactive and conversational manner [3, 4]. Furthermore, in comparison

with Machine Learning (ML) systems, KGs and their integration to AI chatbots in every

mailto:svaritimiadis@aegean.gr

2

domain provides to the AI chatbots better rational dialogues that could eventually lead

to more meaningful AI applications. ML focuses on prediction accuracy and scoring

learning algorithms. Common sense knowledge or reasoning is out-of-scope of ML

systems and for this drawback ML systems are lacking in credibility [5–7]. However,

the combination of KGs and ML is an intriguing future research work.

In a museum visiting experience, visitors must be able to chat with ‘smart’ exhibits,

ask questions in natural forms (through text or voice) and receive audible or written

answers. The utilization of KGs as a key technology for implementing chatbots in this

setting raises not only issues related to the representation and structuring of exhibits’

knowledge in suitable formalism and models, but also issues related to the translation

of natural language dialogues to and from the selected technology for the formal repre-

sentation and structuring of information and knowledge [8]. Moreover, such a transla-

tion must be as transparent as possible to visitors, towards a realistic human-like ques-

tion-answering process [4].

For chatbot framework/application to be effective and useful for the museum or any

other domain, it must combine recent AI technological advances (Semantic Web,

Linked Open Data, Knowledge Graphs, Natural Language Processing/Generation, Ma-

chine Learning) with museum needs and purposes. Natural Language Processing (NLP)

and Natural Language Generation (NLG) techniques enable computers to segment, as-

sign meaning, and analyze human communication in its natural forms and to give the

users the ability to chat with the smart exhibits in a natural way [9, 10].

A museum chatbot must fulfill several specific requirements and characteristics. It

must be simple, informative, accurate and precise. It must have strong conversational

skills and provide meaningful content. It may be entertaining and should be able to

engage the audience in the whole experience/tour duration. It may be positive if there

is a capability by the chatbot to provoke users to find and learn more, but at the same

time to be sensitive and understanding on human emotions [11–13].

Engineers must be able to configure the chatbot for ‘talking’ in human-like manner,

and at the same time ‘taking’ in triples i.e., to retrieve and present structured knowledge

utilizing Resource Description Framework (RDF) triple stores and the Linked Open

Data (LOD) cloud. Furthermore, it must be available anytime, have an attractive inter-

face and to be easy to use/interact with [11–13]. RDF and Web Ontology Language

(OWL) are the two basic descriptive Semantic Web technologies that play a crucial role

in the formal representation and structuring of data, information and knowledge [14].

The presented work aims to address challenges related to the following questions:

1. How can museum visitors ‘talk’ to museum exhibits in the most natural way, to learn

about them?

2. How can human-exhibit dialogues be used for the user to retrieve the exhibit

knowledge about themselves and about other related/connected exhibits, utilizing

linked and open datasets?

3. What is the most appropriate technological trend to use for the most efficient con-

versation between visitors and ‘smart’ exhibits?

In relation to the above questions, the contribution of this paper is threefold:

3

1. To introduce the novel concept and interactive technological trend of AI chatbots for

museums, as an alternative to the high-tech technological AR/VR/MR applications,

towards supporting the learning of knowledge about their exhibits in a human-like,

interactive and conversational manner,

2. To review the approaches and necessary tools for KG/Ontology-based AI chatbots

and Query/Answering (QA) systems, as an alternative candidate to the ones based

on ML techniques (e.g. Dialogflow),

3. To introduce a novel KG-based framework for chatbot-human interaction in a smart

museum environment and the MuBot approach to the design, implementation and

evaluation of such a framework.

The rest of the paper is structured as follows: Section 2 presents the related work

concerning the development and use of AI chatbots and QA systems based on KGs

and/or ontologies. Also, this section provides a critical description of key tools for

NLP/NLG and KGs/Ontologies transformation/translation. Section 3 presents the Mu-

Bot approach, the main purpose, the special features, and the architectural design. In

section 4, the Cretan MuBot is presented, the first experimental chatbot of the MuBot

approach, as an evaluation case study in the Heracleum Archaeological Museum. Sec-

tion 5 discusses future steps in the development of the MuBot approach and concludes

the paper.

2 Related Work

In this section, selected related approaches to AI chatbots/QA systems that are based

on KGs and/or ontologies, as well as selected research and commercial tools for

NLP/NLG and KGs/Ontologies transformation/translation, are presented. The aim of

our work is to evaluate all these approaches and tools for their usability and effective-

ness, in the context of the proposed MuBot approach.

2.1 Related approaches to AI chatbots/QA systems based on KGs

and/or ontologies

KGs are considered as a new AI technological trend that originates to the basic princi-

ples of the Semantic Web and the construction of Knowledge Bases (KBs). As KGs are

in an evolution process, several definitions can be found [1, 2]. A definition quoted

from recent literature is: “A knowledge graph (i) mainly describes real world entities

and their interrelations, organized in a directed graph, (ii) defines possible classes and

relations of entities in a schema, (iii) allows for potentially interrelating arbitrary enti-

ties with each other and (iv) covers various topical domains” [15].

The term KG was re-introduced as such at 2012 by Google, which has developed the

famous Google’s Knowledge Graph [16]. The most famous open and commercial KGs

are Freebase, Wikidata, DBpedia, Yago, Google’s Knowledge Graph Yahoo!’s

Knowledge Graph, Microsoft’s Satori and Facebook’s Entities Graph [15]. KGs have

many advantages and can be used for a variety of tasks such as relationship prediction

systems, search engines and question/answering agents [2]. KGs are flexible, can be

4

easily updated and related to new data in a smart way, contain semantic information,

rely on ontologies and may be queried in natural language [2, 16]. KGs may also be

used in synergy with other available AI-driven technologies such as NLP, NLG, OWL

and RDF datasets [2]. KGs have the ability to respond to NLG questions through data-

base query languages. AI chatbots and QA systems can exploit this new opportunity of

KGs and become ‘smarter’ by gaining unlimited access to stored and structured

knowledge [9].

There are many proposed approaches to the recent bibliography that introduce KGs

to AI chatbots and QA systems. Hallili [10] has proposed the SynchroBot, a dialog

system that a) has connectivity to robust and flexible KBs and KGs for extracting in-

formation, and b) could use NLP tools to interpret user’s questions and NLG techniques

to provide proper answers. This ability differs from other QA systems which are either

focusing in providing a logical conversation ability to the users, without caring for the

richness of their knowledge source, or, on the other hand, can only provide accurate

answers without any conversation skills.

OntBot was an earlier ontology-based chatbot that relied on the approach proposed

by Hallili [17]. OntBot used the Protégé platform [18] in order to develop an ontology

template which gathers knowledge from e-commerce website APIs. Users can place

their questions to a dialog manager that uses NLP such as Facebook Wit.Ai. The dialog

manager connects to the ontology template with Python language, searches the KBs

and KGs and provides the proper answer to the user with the help of NLG techniques

from the dialog manager [19].

Another similar approach was implemented for the healthcare domain and the goal

was to produce a framework that can assist patients by providing them an AI chatbot

with strong conversational skills and a robust Knowledge Base source [20, 21].

A clear statement of KGs as a part of AI chatbot is provided at the proposed approach

of ‘GRANK.AI.’ KGs platform. GRAKN.AI is described as a KG database that uses

machine reasoning to simplify data processing for AI Chatbots and other applications.

Question querying is done through Graql, a knowledge-oriented graph query language

for retrieving information, and for performing graph analytics and automated reason-

ing. The proposed approach is using DialogFlow with all its NLP, NLG, ML compo-

nents, as the dialogue manager component. DialogFlow is connected to GRAKN.AI

KGs and searches for the proper answer to the user’s question [9]. It is a good example

approach for demonstrating the combination of KGs and ML technologies.

Summarizing, the integration of KGs to AI Chatbots and Q/A systems is a task that

can boost the AI chatbots effectiveness. More crucial though is the development and

evaluation of NLP/NLG components that could become a reliable interpreter of natural

language input or output.

2.2 Tools for NLP/NLG and KGs/Ontologies translation

The tools that are presented and reviewed in this paper are covering key parts of the

proposed approach and focus on the following questions:

1. How to recognize the entities and their relationships in a statement?

5

2. How to translate natural language text to a KG/ontology?

3. How to translate natural language questions to SPARQL queries?

4. How to translate RDF triples (returned from the SPARQL query) to natural language

text?

Name Entity Recognition

Word Sense Disambiguation (WSD) and Name Entity Recognition (NER) for the learn-

ing of ontologies from text, are difficult tasks to accomplish and automate. Several tools

were developed that can recognize the entities and the classes of given user statements

in natural language.

The NLP group at Stanford University developed the Stanford Named Entity Recog-

nition (NER), a Java-based tool used for information extraction from users’ text. NER

tries to find and classify atomic entities in text into predefined categories such as the

names of persons, organizations, locations, expressions of times, quantities, monetary

values, percentages, etc. [22]. An online demo is published at http://nlp.stan-

ford.edu:8080/ner/. Using the example expression “Snake Goddess figurine was found

at Knossos palace in Crete” as input to the tool, entity “Location” for the words “Knos-

sos, Crete” and “Organization” for the words “Snake Goddess” respectively, were rec-

ognized.

A more advanced tool for parsing plain text is Stanford CoreNLP which provides a

set of grammatical analysis NLP tools developed by Stanford NLP group, such as the

part-of-speech (POS) tagger, the named entity recognizer (NER), the parser, the open

information extraction tool (OPENIE) and others [23, 24]. An online demo of the

CoreNLP tool is found at http://corenlp.run/. The tool was evaluated with the expres-

sion “Snake Goddess figurine was found at Knossos Palace, in Crete” and successfully

returned a set of outputs by every integrated subtool i.e., NER tool recognized the en-

tities as described above, while OPENIE analyzed and recognized the relationships be-

tween them.

Another tool is Babelfy which implements a graph-based approach to Name Entity

Recognition and Linking, and WSD, based on a light identification of the possible

meanings presented in graphical semantic interpretations. Babelfy is demonstrated in

an online tool at http://babelfy.org/. When the phrase “Snake Goddess figurine was

found at Knossos palace in Crete” was used as input, the tool successfully recognized

the entities and the concepts, searched for them to LOD cloud sources such as Wikipe-

dia, Babelnet and DBpedia, and fetched the definitions of every entity organized in a

graph representation [25].

Natural language text to KGs/ontologies

Protégé is the most popular and widely used free software for easily building and main-

taining ontologies for any domain. Users can edit domain ontologies, share their ontol-

ogy to others, create a knowledge graph representation of them, connect them with ex-

ternal sources, design and implement SPARQL queries, export the developed ontolo-

gies in several formats such as RDF/XML, RDF/OWL and others [18]. Protégé is also

a Web service for registered users at https://webprotege.stanford.edu [26]. Protégé has

been used in our use case scenario to manually create the Cretan MuBot evaluation

http://nlp.stanford.edu:8080/ner/
http://nlp.stanford.edu:8080/ner/
http://nlp.stanford.edu/software/tagger.html
http://nlp.stanford.edu/software/tagger.html
http://nlp.stanford.edu/software/CRF-NER.html
http://nlp.stanford.edu/software/lex-parser.html
http://nlp.stanford.edu/software/openie.html
http://nlp.stanford.edu/software/openie.html
http://corenlp.run/
http://babelfy.org/
https://webprotege.stanford.edu/

6

knowledge base (schema and museum data). The output is available at

https://github.com/KotisK/muBotOnto-example. Protégé is providing excellent ser-

vices in manually building a knowledge base but lacks automation in the creation of

ontology schemas from user input statements.

FRED is a tool for automatically producing RDF/OWL ontologies and linked data

from natural language sentences. It is implemented in Python and is available as Rep-

resentational state transfer (REST) service [27] and as a Python library suite. FRED is

using a big set of established NLP components to produce RDF/OWL ontologies and

knowledge graphs. The provided results are enriched with NER and WSD techniques

[28]. FRED tool is available online at http://wit.istc.cnr.it/stlab-tools/fred/demo/ and

was used to produce RDF/OWL ontology and a KG for the expression “Snake Goddess

figurine was found at Knossos palace in Crete”. The example output is included at

https://github.com/KotisK/muBotOnto-example. The FRED tool provided an RDF on-

tology that has some basic similarities with our custom-made Protégé ontology, as en-

tities, classes and properties are similarly recognized to both ontologies. FRED is using

RDF triples that are only derived from DBpedia KB, while our Protégé ontology uses

custom-made properties and entities. FRED tool is been used in several semantic web

applications and will be considered as a component to the proposed MuBot approach.

Natural language text to SPARQL queries

AutoSparql was developed by the Research Group Agile Knowledge Engineering and

Semantic Web (AKSW) at University of Leipzig (http://aksw.org/Projects/Au-

toSPARQL.html). Its main goal is to provide users an easy way to place questions to a

knowledge base. Specifically, AutoSparql can convert a natural language question to a

SPARQL query, which can then retrieve the answer from a given RDF triple store. The

software uses the Query Tree Learner (QTL) algorithm which is described by its crea-

tors as a light-weight learning algorithm [29]. The QTL algorithm can use various NLP

techniques for creating sophisticated semantic representations of the given questions.

In addition, the system and the algorithm can be trained and become smarter in provid-

ing the proper SPARQL queries. Furthermore, the user can connect with open RDF

resources such as DBpedia and others [29–31]. AutoSparql software is not active now

but its code is available at https://github.com/AskNowQA/AutoSPARQL. During eval-

uation, runtime errors were reported at compile time. Future work includes fixing and

testing the tool in order to be used as candidate component of the proposed MuBot

approach.

FREyA software is an interactive natural language interface that is used for querying

ontologies. FREyA uses syntactic parsing in combination with the ontology-based

lookup in order to interpret the question of the user. FREyA is also able to use Linked

Open Data such as DBpedia. In addition, the user gets further involved and trains the

system as his choices are used in order to improve its performance over time [32, 33].

This strong involvement of the user in the training of the system is consider as a draw-

back, as the naivety of the user about certain complex issues of data modelling, without

any assistance, may not lead to the best results [30]. FREyA is not fully active now but

http://wit.istc.cnr.it/stlab-tools/fred/demo/
http://www.uni-leipzig.de/
https://github.com/AskNowQA/AutoSPARQL

7

its code is available at https://github.com/danicadamljanovic/freya. The code is out-

dated (Sesame java framework has evolved to Eclipse RDF4J framework which re-

quires further installation efforts, which are left for future work).

QUEPY is a python framework that can transform natural language questions to

SPARQL queries. The transformation from natural language to SPARQL queries is

done by using at first a special form of regular expressions and then using a convenient

way to express semantic relations. The input question is parsed using a library called

REfO (Regular Expressions for Objects). The rest of the transformation is handled au-

tomatically with the use of the Natural Language ToolKit (NLTK), a python platform

that is included in the QUEPY framework and other techniques, to finally produce RDF

triples and SPARQL queries [34, 35]. The QUEPY demo is not fully developed and

supported. The code and the documentation of the tool is found at

https://quepy.readthedocs.io/en/latest/. The software needs significant effort in order to

be installed and work properly.

In our future work we aim to reuse and proceed to any modifications to the above-

mentioned tools in order to make them functionable components of our approach.

SPARQL query and RDF triples to natural language

SPARQL2NL is a tool that was developed by the Agile Knowledge Engineering and

Semantic Web (AKSW) research group at University of Leipzig

(http://aksw.org/Projects/SPARQL2NL.html). The SPARQL2NL tool allows the ver-

balization of SPARQL queries by converting them into natural language. The tool uses

LOD sources such as DBpedia and performs several improvements to the given results

of the queries that help users to choose the suitable answer in a natural way, without

getting involved with ontologies and SPARQL queries’ syntax [29, 36]. The

SPARQL2NL project is not active now but its code is available at

https://github.com/AKSW/SPARQL2NL. The installation of SPARQL2NL software

encountered the same compile errors as the AutoSparql software.

The Spartiqulator system provides a similar functionality as the SPARQL2NL tool.

Its main scope is to verbalize SPARQL queries in order to create natural language ex-

pressions that are readable and understandable by the common user. The Spartiqulator

system refers only to RDFa and RDFS sources and uses several NLG techniques for

the verbalization of SPARQL queries to suitable answers for the users [37, 38]. There

is an active online demo of the tool at https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqu-

lator/. The tool has been tested with SPARQL queries from our Cretan MuBot use case

scenario. For our example SPARQL query (Where was Snake Goddess found?), which

can be found at https://github.com/KotisK/muBotOnto-example, Spartiqulator system

provided the answer “Found ats of snake goddess”. The given answer has obvious syn-

tax and grammatical mistakes and also lacks the location property which is derived

from http://dbpedia.org/ontology/ that is not supported by the Spartiqulator system. The

same limitations were also noticed with other example SPARQL queries that have been

used for testing the tool.

SPARQLtoUser is a tool that can produce a representation of a provided SPARQL

query to the end-users. The tool supports multilingual input and refers to any domain.

https://github.com/danicadamljanovic/freya
https://quepy.readthedocs.io/en/latest/
http://www.uni-leipzig.de/
http://aksw.org/Projects/SPARQL2NL.html
https://github.com/AKSW/SPARQL2NL
https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqulator/
https://aifb-ls3-kos.aifb.kit.edu/projects/spartiqulator/
https://github.com/KotisK/muBotOnto-example
http://dbpedia.org/ontology/

8

The tool tries not only to verbalize the query, but also to find a more schematic repre-

sentation of it. The user can choose the SPARQL query that provides the most accurate

answer. SPARQLtoUser code can be found at https://github.com/WDAqua/

SPARQLtoUser [39]. SPARQLtoUser tool is also used as a QA webservice available

at http://www.wdaqua.eu/qa. The webservice is accepting input from the users in NLG

and is providing them several possible answers along with their SPARQL queries, al-

lowing them to select the most suitable one. It also provides a probability score to each

answer, asking users to affirm it or not. The QA webservice refers and gets its answers

from Wikidata, DBpedia, DBLP and OpenStreetMap KDs, but cannot understand all

user’s questions and answer them directly and in a sophisticated way. SPARQLtoUser

tool returned “no answer” for our example query “Where was Snake Goddess found

at?”. However, for the term “Snake Goddess” the tool returned the correspondent Wik-

ipedia data entry.

Sparklis is a Semantic Web tool that helps users to explore SPARQL endpoints by

guiding them in the interactive building of questions and answers, from simple ones to

complex ones. There is an online tool at

http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html. Users can build a query without

having any knowledge of the SPARQL language. Users can see the SPARQL query

that has been created and get a proper answer [40, 41]. The tool has been evaluated with

the questions from our Cretan MuBot use case. Unfortunately, due to the fact that the

tool uses only profound SPARQL endpoints such as DBpedia, it could not provide

proper answers. The user is not able to place a free question and must follow a guided

structure [42]. The tool works well only if you shape a query such as “Give me an island

in Greece?”. The tool can retrieve the possible answers by providing all the islands in

Greece. But in the case of questions such as “I want to find the most famous island in

Greece?” the tool fails.

LD2NL is an open-source holistic NLG framework that facilitates the verbalization

of the three key languages of the Semantic Web (RDF, OWL, and SPARQL) into NL.

LD2NL framework builds upon the open source code of SPARQL2NL tool, which pre-

sented in a previous paragraph [43]. The LD2NL can generate either a single sentence

or a summary of a given resource, rule, or query [44]. The LD2NL is an ongoing project

that is not fully released as a portable application. Its code could be found at

https://github.com/dice-group/LD2NL.

We aim to reuse and proceed to any modifications to the abovementioned tools in

order to make them functionable components of the proposed MuBot approach.

3 The MuBot approach

The architecture of the MuBot approach that is proposed in this paper relies on three

main components:

─ a Knowledge Base component that utilizes Semantic Web technology (RDF,

SPARQL query language, OWL ontologies) for knowledge representation, linking,

reasoning and querying,

https://github.com/WDAqua/
http://www.wdaqua.eu/qa
https://github.com/dice-group/LD2NL

9

─ NLP component for interpreting users input from natural language to

RDF/SPARQL,

─ NLG component for creating the proper well-defined human-like answers.

The aim of the approach is to develop an AI chatbot able to conduct dialogues/con-

versations, such as the following:

─ User: Where was the Snake Goddess figurine found?

─ Chatbot: The Snake Goddess was found at Knossos Palace.

─ User: And where is Knossos Palace located?

─ Chatbot: Knossos Palace is in Crete.

Moreover, an additional objective of the proposed approach is to customize such a

conversation in a way that it looks like discussing with the exhibit itself, in case where

visitors are found to be nearby (in close range) with it. In this case, the chatbot takes

over the role of the exhibit (it becomes the exhibit). For instance, the following dialogue

is presented in a museum visitor standing close to the Snake Goddess exhibit, where

the chatbot now has taken over the role of the Snake Goddess exhibit:

─ User: Where were you found?

─ Snake Goddess (as chatbot): I was found at Knossos Palace.

─ User: And do you know where Knossos Palace is located?

─ Snake Goddess (as chatbot): I do. Knossos Palace is located in Crete.

Providing a personality trait to an AI chatbot, contributes towards a more engaging

experience for the visitors as first person communication is always more effective [45].

In future work authors will evaluate and reuse tools that can provide personality traits

to the MuBot approach.

3.1 KG-based chatbot-human interaction in a smart museum

environment

In the following paragraphs, the interaction (questioning/answering) between a chatbot

of a smart museum and its visitors that want to interactively learn about its exhibits, is

presented.

For demonstration purposes, Fig. 1 depicts the interaction of two visitors (human

entities) and the chatbot (software entity) about two exhibits. This choice has been made

in order to point out the capacity of the proposed approach to setup the chatbot in a way

that can lookup/search for the requested knowledge in a distributed manner, i.e., among

the network of interconnected/interrelated exhibits. Such a network is built offline by

the curators that are familiar with the ‘stories’ that each exhibit can tell the visitors.

This interconnection/interrelation is formally put in a knowledge index structure that

the chatbot has access for lookup/search during the QA processing. So, if a question

cannot be answered by the chatbot, due to lack of knowledge that a smart exhibit may

have (i.e., its KG is missing the related RDF triples), the chatbot may lookup/search

this index for relative knowledge that resides in the KGs of another smart exhibit or in

the LOD cloud.

The following entities ‘live’ in the example smart museum environment:

• Human (H): the visitor in the museum,

10

• Chatbot (CH): the chatbot software agent,

• Exhibit (Exh): the actual artefact in a museum e.g., a painting, a figurine, etc.,

• Smart Exhibit (SExh): the virtual exhibit in the smart environment of a museum, a

virtual entity represented in a conceptual model and encoded in a formal language

such as OWL.

In terms of data, information and knowledge, the following are considered to be the

required in such a setting: a) Knowledge Graph (KG), b) Natural Language Question

(NL-Q), c) Natural Language Answer (NL-A),d) Formal Language Question (FL-Q),

e) Formal Language Answer (FL-A), f) SPARQL query (SPARQL-q), g) RDF triples

(RDF-triples), h) Data Links (DL).

In terms of storage, the setting involves: a) Knowledge Graphs in RDF triples store

(KG-store), b) a “Smart Exhibits” Knowledge Index store (SExh-KI-store), and c) the

Linked Open Data cloud (LOD-cloud).

Finally, the processing of data, information and knowledge requires the following

components: a) Natural to formal language conversion (NL2FL), b) Formal to natural

language conversion (FL2NL), c) Smart Exhibits’ Knowledge Index Lookup (SExh-

KI-LU), d) Formal Language Question Execution (FL-Q-Exec), e) Data Links Discov-

ery (DL-D).

Fig. 1. Visitors interaction with Smart exhibits through the CH application

11

In Fig. 1, an example representation of how two museum visitors interact through

the chatbot dialog manager with two “smart” exhibits is depicted. The process is as

follows:

1. The visitors, as they use the chatbot application and reach the exhibit of their interest

(Exh1, Exh2), interact with the CH by setting a NL-Q.

2. The CH searches at the SExh-KI-store, with the use of SExh-KI-LU, and finds the

stored basic information about the exhibits.

3. The CH, with its NL2FL component, translates the NL-Q (1, 2) of the visitors to a

formal syntax and sends them to the FL-Q-Exec. The NL2FL component is using

NLP techniques as the NER.

4. At the FL-Q-Exec, FL-Q (1,2) are transformed to SPARQL-q which are looked-up

to KG-store for retrieving the right answer.

5. KGs, that are designed for the description of the SExhs, are stored at the KG-store

(as RDF triples). If an answer could not be found to the exact matched stored SExhs

KGs at the KG-store, an additional search could be conducted to other SExh KGs of

the museum KG-store or with the use of the DL-D component to connected LOD

cloud sources.

6. When the matched RDF triples are retrieved, the FL-Q-Exec sends the FL-A to the

FL2NL component.

7. At the FL2NL component, NLG techniques are used for the transformation of the

FL-As to NL-As for the SExHs.

8. Finally, the visitors receive the NL-As through the CH app and could proceed to the

next NL-Q.

3.2 The MuΒot general architecture

The proposed MuBot approach aims to provide museums the opportunity to create sim-

ple, interactive and human-friendly chatbots for their visitors. Visitors will be able to

use a chatbot application that will be created through the MuBot platform, to chat with

a ‘smart’ exhibit when they are in front of (or close to) it. They will be able to ask

questions through text or voice (in natural language) and receive audible or written

answers. The basic components of the proposed general MuBot architecture are pre-

sented in Fig. 2 and are described in brief at the following paragraphs.

12

Fig. 2. The MuBot general architecture.

Dialogue manager

The dialogue manager is the first component of the proposed architecture and it consists

of the front-end graphical user interface that the museum visitors use in order to have a

conversation with the chatbot or the exhibits, in contrast to the back-end infrastructure.

The dialogue manager could be implemented either as a custom-made solution or reuse

a commercial (or free) existing chatbot interface that follows all the UX and UI stand-

ards for creating chatbots.

NLP

The NLP component is a crucial part of the architecture as it takes the natural language

questions (NL-Qs) and transform them to machine-readable formal questions (FL-Qs).

Related work [10, 46] describes three aspects of NLP identification:

─ Expected Answer Type (EAT), which in the proposed architecture is handled by the

Content Type Recognizer (CTR), represents the answer to the question,

─ the property that relates the question with the possible answer, and

13

─ the recognized NE (Named Entity) which in the proposed architecture is handled by

the Content Entity Recognizer (CER) and represents the subject of the question

made.

Query generator and Knowledge Base retriever

This component transforms the FL-Qs to SPARQL-queries with the FL-Q-Exeq com-

ponent and searches the KGs Store or the LOD cloud for the proper knowledge. The

FL-Q-Exeq receives the provided knowledge in RDF triples and transform it to FL-As.

Knowledge Base (KB)

The KB store is the storage of the KGs. If the search to the KB does not return any

results, the DL-D tool will search for possible answers from external Data Links and

the LOD cloud. When the knowledge is retrieved, the right answer returns to the FL-

Q-Exeq as RDF triples. The connection/linkage of the MuBot architecture with external

KGs, such as DBpedia, and the reasoning engine (inferencing mechanism) pro-

vides/adds a range of additional (inferred) RDF triples that multiplies the ability of CH

in understanding users’ questions.

NLG

This component of the proposed architecture uses NLG techniques in order to pick a

response pattern that matches with the query-provided triples and proceeds to the final

answer formatting by providing user the proper human-like NL-As.

4 Evaluation

The proposed MuBot architecture is under deployment and evaluation with example

cases in the Archaeological Museum of Heraklion. Specifically, the Cretan MuBot use

case scenario has the visitors chatting with a famous exhibit of the museum, the “Snake

Goddess” figurine. For the specific scenario an example ontology was manually engi-

neered and stored to the knowledge base. An example model (in .owl and .ttl serializa-

tions) and related queries in SPARQL can be accessed at https://github.com/Ko-

tisK/muBotOnto-example. In the following paragraphs, the Cretan MuBot use case sce-

nario and the related queries that have been engineered for this purpose are demon-

strated.

4.1 Knowledge Base

The KB uses an example MuBot ontology engineered with the use of the Protégé tool

for the specific scenario, with IRI: http://i-lab.aegean.gr/ontologies/mubotOnto/ and

prefix “mbo”. It uses ontologies that are derived from external sources such as the

DBpedia ontology, with IRI: http://dbpedia.org/ontology/ and prefix “dbo”.

https://github.com/KotisK/muBotOnto-example
https://github.com/KotisK/muBotOnto-example
http://i-lab.aegean.gr/ontologies/mubotOnto/
http://dbpedia.org/ontology/

14

Fig. 3. The Cretan MuBot KG-oriented instantiation.

The MuBot experimental ontological model data is described in the triples form

<subject>, <predicate>, <object>. In our example, the statement “Snake Goddess figu-

rine was discovered at Knossos Palace” is expressed with the following RDF triples:

a) <mbo:SnakeGoddess> <rdf:type> <mbo:Figurine>

b) <mbo:SnakeGoddess> <mbo:discoveredAt> <mbo:KnossosPalace>

By extending and enriching the model with external DBpedia semantic data and the

MuBot ontology, the following triples can be added:

c) <mbo:Figurine> <mbo:discoveredAt> <dbo:Place>

d) <mbo:KnossosPalace> <dbo:location> <dbo:Crete>

e) <dbo:Crete> <rdf:type> <dbo:Place>

f) <mbo:KnossosPalace> <rdf:type> <dbo:Place>

The classes that are produced for the example instantiation are: mbo:Figurine and

dbo:Place, and the properties are: mbo:discoveredAt, rdf:type, and dbo:location. Fur-

thermore, synonyms could be added to the classes and properties, allowing the system

to be able to understand different questions with the same meaning.

4.2 Question understanding with NLP

The users of the MuBot platform can place their questions through textual or vocal

input methods. Voice to text transformation tools can be used for vocal input (such tools

15

are out of the scope of the presented work). The provided text input can be interpreted

using several NLP techniques and tools, as described in the Related Work section. In

the presented example the question made is “Where Snake Goddess figurine was dis-

covered?”. The CTR is mbo:location, the property is mbo:discoveredAt and the CER

is mbo:SnakeGoddess and mbo:Figurine.

When all the natural language input is processed, the component is generating a for-

mal language query (in our case in SPARQL) that produces results (answers) from the

KB. The example formal query follows:

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT? v? z

WHERE {

mbo: SnakeGoddess mbo:discoveredAt ?v.

?v dbo:location ?z.

}

After query execution and pattern matching, the following triples are matched and

returned:

a) <mbo:SnakeGoddess> <mbo:discoveredAt> <mbo:KnossosPalace>

b) <mbo:KnossosPalace> <dbo:location> <dbo:Crete>

In a more elaborated example engineered to demonstrate the inferencing/reasoning

capabilities of the proposed approach, the following statement is defined (in terms of

properties and property hierarchy):

c) <mbo:discoveredAt> <rdfs:subPropertyOf> <mbo:foundAt>

The restriction of mbo:foundAt object property has as domain the class mbo:Figu-

rine, and as range the class dbo:Place. Inferencing will add the following inferred triple

in the model:

d) <mbo:SnakeGoddess> <mbo:foundAt> <mbo:KnossosPalace>

This allows for querying the inferred model (tested in Snap SPARQL plugin of Pro-

tégé 5.5) with the following queries also:

I. “Where Snake Goddess figurine was found?”:

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?v ?z

WHERE {

 mbo:SnakeGoddess mbo:foundAt ?v.

 ?v dbo:location ?z.

}

The returned data in variables are: ?v = mbo: KnossosPalace, z? = mbo:Crete.

16

II. “What was found in Crete?”:

PREFIX mbo: <http:/i-lab.aegean.gr/ontologies/mubotOnto/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?s ?v

WHERE {

 ?s mbo:foundAt ?v.

 ?v dbo:location mbo:Crete.

}

The returned data in variables are: ?s = mbo:SnakeGoddess, v? = mbo: KnossosPal-

ace, allowing for NLG module (described in next section) to provide answers such as

“Snake Goddess was found in Knossos Palace, in Crete”.

The example Cretan Mubot model (in .owl and .ttl serializations) and the related

queries in SPARQL can be accessed from https://github.com/KotisK/muBotOnto-ex-

ample.

4.3 NLG answers

The last step of the process in the MuBot architecture is the creation/formation of the

appropriate answer to the given question(s).

In the presented example, the NLG component will be able to generate the following

answers:

a) “Snake Goddess was found at Knossos Palace”

b) “Knossos Palace is located in Crete”

Or better, by synthesizing the two statements above:

c) “Snake Goddess was found at Knossos Palace, in Crete” (replacing ‘is lo-

cated in’ with ‘, in’).

The generation processes could be more creative if it can exploit additional semantic

properties that, for example, could return multimedia files like a video of the figurine,

as a response.

5 Conclusion

The design and development of an AI museum chatbot with the use of KGs is a big

challenge as there are several distinct tasks to be considered in order to provide credible

answers to questions in a human-like manner. The provide review of key tools and

KGs-based AI chatbot approaches aims to provide knowledge related to the proposed

architectural components that must be considered for the implementation and deploy-

ment of the MuBot approach. AI chatbots must be designed in a way that museum

visitors will be facilitated to interact with exhibits the way they could possibly interact

with a museum curator or a guide. Moreover, museum chatbots should have strong

conversational skills in order to seamlessly engage users in their cultural experience.

https://github.com/KotisK/muBotOnto-example
https://github.com/KotisK/muBotOnto-example

17

This can be achieved by seamlessly accessing and consuming knowledge through KGs

stores and the LOD cloud.

The deployment of the Cretan MuBot use case provides the opportunity to evaluate

the proposed approach and highlight the steps to future work. Such work is focusing in

further evaluating NLP/NLG related modules i.e., evaluation of key tools that transform

natural language (visitor questions) to SPARQL queries and the returned triples

(knowledge) back to natural language (answers to visitor), in the most effective and

human-centered manner. In addition, further work should be conducted in defining the

needs and the requirements of museum visitors and museum curators by the proposed

AI museum chatbot approach. This might be considered as the most intriguing part of

our future work as MuBot approach must not only provide credible answers in a human-

like manner but should also develop personality traits and skills that will engage the

users and assist them in the understanding of the presented museum/cultural

knowledge.

References

1. Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs,

(2018). https://doi.org/10.1007/s11704-016-5228-9.

2. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: new directions

for knowledge representation on the semantic web. Rep. from Dagstuhl Semin. 8, 29–

111 (2019). https://doi.org/10.4230/DagRep.8.9.29.

3. Roussou, M., Perry, S., Katifori, A., Vassos, S., Tzouganatou, A., McKinney, S.:

Transformation through Provocation? 1–13 (2019).

https://doi.org/10.1145/3290605.3300857.

4. Schaffer, S., Gustke, O., Oldemeier, J., Reithinger, N.: Towards chatbots in the museum.

CEUR Workshop Proc. 2176, 1–7 (2018).

5. Tresp, V., Ma, Y., Baier, S.: Machine Learning with Knowledge Graphs. Proc. Twelfth

Int. Work. Neural-Symbolic Learn. Reason. 2017. 1–48 (2014).

6. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine

learning for knowledge graphs. Proc. IEEE. 104, 11–33 (2016).

https://doi.org/10.1109/JPROC.2015.2483592.

7. Pommellet, T., Lécué, F.: Feeding machine learning with knowledge graphs for

explainable object detection. CEUR Workshop Proc. 2456, 277–280 (2019).

8. Androutsopoulos, I., Spiliotopoulos, D., Stamatakis, K., Dimitromanolaki, A.,

Karkaletsis, V., Spyropoulos, C.D.: Symbolic authoring for multilingual natural

language generation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics). 2308, 131–142 (2002). https://doi.org/10.1007/3-

540-46014-4_13.

9. Orth, A.: Building Chatbots with Dialogflow and GRAKN.AI,

https://blog.grakn.ai/chatbots-and-grakn-ai-67563c64cfde.

10. Hallili, A.: Toward an Ontology-Based Chatbot Endowed with Natural Language

Processing and Generation Amine Hallili To cite this version : HAL Id : hal-01089102.

7271 (2014).

18

11. Akma, N., Hafiz, M., Zainal, A., Fairuz, M., Adnan, Z.: Review of Chatbots Design

Techniques. Int. J. Comput. Appl. 181, 7–10 (2018).

https://doi.org/10.5120/ijca2018917606.

12. Radziwill, N.M., Benton, M.C.: Evaluating Quality of Chatbots and Intelligent

Conversational Agents. (2017).

13. Shawar, B.A., Atwell, E.: ALICE chatbot: Trials and outputs. Comput. y Sist. 19, 625–

632 (2015). https://doi.org/10.13053/CyS-19-4-2326.

14. Cahn, B.J.: [Thesis] Chatbot Literature Review. (2017).

15. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation

methods. Semant. Web. 8, 489–508 (2017). https://doi.org/10.3233/SW-160218.

16. Stichbury, J.: WTF is a knowledge graph ?

17. Al-Zubaide, H., Issa, A.A.: OntBot: Ontology based ChatBot. In: 2011 4th International

Symposium on Innovation in Information and Communication Technology,

ISIICT’2011 (2011). https://doi.org/10.1109/ISIICT.2011.6149594.

18. Musen, M.A.: The protégé project. AI Matters. 1, 4–12 (2015).

https://doi.org/10.1145/2757001.2757003.

19. Vegesna, A., Jain, P., Porwal, D.: Ontology based Chatbot (For E-commerce Website).

Int. J. Comput. Appl. 179, 51–55 (2018). https://doi.org/10.5120/ijca2018916215.

20. Kamateri, E., Meditskos, G., Symeonidis, S., Vrochidis, S.: Knowledge-based

Intelligence and Strategy Learning for Personalised Virtual Assistance in the Healthcare

Domain. 13th Int. Conf. Adv. Semant. Process. (2019).

21. Meditskos, G., Dasiopoulou, S., Pragst, L., Ultes, S., Vrochidis, S., Kompatsiaris, I.,

Wanner, L.: Towards an ontology-driven adaptive dialogue framework. MARMI 2016

- Proc. 2016 ACM 1st Int. Work. Multimed. Anal. Retr. Multimodal Interact. co-located

with ICMR 2016. 15–20 (2016). https://doi.org/10.1145/2927006.2927009.

22. Krishnan, V., Ganapathy, V.: Named Entity Recognition. (2005).

23. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The

Stanford CoreNLP Natural Language Processing Toolkit. 55–60 (2015).

https://doi.org/10.3115/v1/p14-5010.

24. Angeli, G., Premkumar, M.J., Manning, C.D.: Leveraging linguistic structure for open

domain information extraction. ACL-IJCNLP 2015 - 53rd Annu. Meet. Assoc. Comput.

Linguist. 7th Int. Jt. Conf. Nat. Lang. Process. Asian Fed. Nat. Lang. Process. Proc.

Conf. 1, 344–354 (2015). https://doi.org/10.3115/v1/p15-1034.

25. Moro, A., Raganato, A., Navigli, R., Informatica, D., Elena, V.R.: Entity Linking meets

Word Sense Disambiguation : a Unified Approach. 2, 231–244 (2014).

26. Horridge, M., Gonçalves, R.S., Nyulas, C.I., Tudorache, T., Musen, M.A.: WebProtégé:

A cloud-based ontology editor. Web Conf. 2019 - Companion World Wide Web Conf.

WWW 2019. 686–689 (2019). https://doi.org/10.1145/3308560.3317707.

27. Neumann, A., Laranjeiro, N., Bernardino, J.: An Analysis of Public REST Web Service

APIs. IEEE Trans. Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2847344.

28. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F.,

Mongiovì, M.: Semantic Web Machine Reading with FRED. Semant. Web. 8, 873–893

(2017). https://doi.org/10.3233/SW-160240.

29. Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

19

Bioinformatics). 6643 LNCS, 63–79 (2011). https://doi.org/10.1007/978-3-642-21034-

1_5.

30. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano, P.:

Template-based question answering over RDF data. WWW’12 - Proc. 21st Annu. Conf.

World Wide Web. 639–648 (2012). https://doi.org/10.1145/2187836.2187923.

31. Höffner, K., Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D.,

Cimiano, P.: TBSL Question Answering System Demo. Proc. 4th Conf. Knowl. Eng.

Semant. Web. (2013).

32. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural language interfaces to

ontologies: Combining syntactic analysis and ontology-based lookup through the user

interaction. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics). 6088 LNCS, 106–120 (2010). https://doi.org/10.1007/978-3-

642-13486-9_8.

33. Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: An interactive way of

querying linked data using natural language. Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 7117 LNCS, 125–138

(2012). https://doi.org/10.1007/978-3-642-25953-1_11.

34. Bansal, R., Chawla, S.: An Approach for Semantic Information Retrieval from Ontology

in Computer Science Domain. Int. J. Eng. Adv. Technol. 2249–8958 (2014).

35. Sæbu, T.S.: OptiqueNLQF: A natural language query formulation system based on

Semantic Technologies. (2015).

36. Ngomo, A.C.N., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: SPARQL2NL -

Verbalizing SPARQL queries. WWW 2013 Companion - Proc. 22nd Int. Conf. World

Wide Web. 329–332 (2013).

37. Ell, B., Vrandečić, D., Simperl, E.: SPARTIQULATION: Verbalizing SPARQL

queries. CEUR Workshop Proc. 913, 50–60 (2012).

38. Ell, B., Harth, A., Simperl, E.: SPARQL query verbalization for explaining semantic

search engine queries. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics). 8465 LNCS, 426–441 (2014).

https://doi.org/10.1007/978-3-319-07443-6_29.

39. Diefenbach, D., Dridi, Y., Singh, K., Maret, P.: SPARQLtoUser: Did the question

answering system understand me? CEUR Workshop Proc. 1932, 1–8 (2017).

40. Ferré, S.: SPARKLIS: A SPARQL endpoint explorer for expressive question answering.

CEUR Workshop Proc. 1272, 45–48 (2014).

41. Beaulieu, C. De: What ’ s New in SPARKLIS. 1–4 (2016).

42. Ferré, S.: Sparklis: An expressive query builder for SPARQL endpoints with guidance

in natural language. Semant. Web. 8, 405–418 (2017). https://doi.org/10.3233/SW-

150208.

43. Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, i don’t

speak SPARQL. 977–988 (2013). https://doi.org/10.1145/2488388.2488473.

44. Ngonga Ngomo, A.-C., Moussallem, D., Bühmann, L.: A Holistic Natural Language

Generation Framework for the Semantic Web. 819–828 (2019).

https://doi.org/10.26615/978-954-452-056-4_095.

45. Zumstein, D., Hundertmark, S.: Chatbots : an interactive technology for personalized

communication and transaction. Int. J. WWW/Internet. 15, 96–109 (2018).

20

46. Cabrio, E., Cojan, J., Aprosio, A.P., Magnini, B., Lavelli, A., Gandon, F.: QAKiS: An

open domain QA system based on relational patterns. In: CEUR Workshop Proceedings

(2012).

